

Introduction

NAME OF THE SUBJECT:

Groundwater Hydraulics

LECTURER:

Sreten Tomovi, PhD in Civil Engineering

METHODS:

Lectures, exercises, lab exercises, tests, colloquiums.

Introduction

WORKLOAD:

 $3.0 \text{ credits } \times 40/30 = 4 \text{ hours}$ Total workload for the Subject $3.0 \times 30 = 90 \text{ hours}$

EXAMINATION METDODS:

- Attendance to lectures and exercises: max 4 pt;
- Graphic works: max 4 pt;
- Seminary Essays: max 10 pt;
- Tests: max 12 pt;
- Colloquiums: max 40 pt;
- Final exam: max 30 pt;
- Pass requires minimum 50 pt.

Topics

Week 1

- Introduction.
- Motives of watercourse regulation, general concepts,
- hydrological characteristics of watercourses,
- water levels and flows.

Week 2

- Elements of boundary layer theory,
- · distribution of tangential stresses and
- distribution of velocities by cross section.

Topics

Week 3

- · Linear resistances in a bed with a fixed bottom,
- empirical expressions for frictional resistances,
- · coefficient of resistance of the section.
- Laboratory exercises.

Week 4

 Sedimentary formations and alluvial resistances, types of alluvial formations, assessment of alluvial formations

Week 5

· Unsteady flow in natural watercourses

Week 6

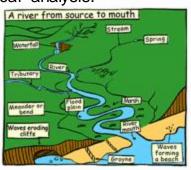
 Steady flow in natural watercourses, hydraulic division, steady flow equation, geometric elements of cross section, normal and critical depth in the bed of complex cross section. Laboratory exercises.

Topics

Week 7

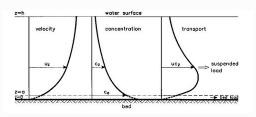
 Secondary currents. Flow in curves, flow in the zone of bridge pillars and other types of secondary flow. Laboratory exercises..

First Testing Week


Week 8

COLLOQUIUM I

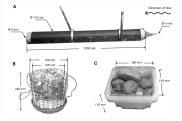
Topics


Week 9

- River morphology.
- Geometric variables, dynamics of alluvial watercourses,
- application of regime theory,
- statistical and morphological analysis.

Week 10

- · River sediment.
- Origin and division, physical properties of river sediment.
- Initiation of drawn sediment, deterministic and stochastic principle of initiation of drawn sediment,
- formation of suspended sediment.


Topics

Week 11

 Methods of measuring the transport of drawn and suspended sediment.

Week 12

 Physical hydraulic models, models with movable and fixed bottom. Laboratory exercises.

Week 13

 Control and regulation works buildings, dimensioning of regulatory structures, construction materials and methods of construction regulatory structures.

Week 14

 Watercourse development projects, substrates and research works, types of projects, content of individual projects.

Second Testing Week

Week 15

• II COLLOQUIUM

Learning outcomes

After having passed the exam, students will be able to:

- 1. Hydraulically calculate the water mirror line for the probabilities of occurrence and duration;
- Determine the diagrams of general deformation of the river section and local changes in regulatory structures;
- 3. Development of Preliminary design of watercourse regulation.

References for the subject

D. Muskatirovic: River Regulation, Faculty of Civil Engineering, Belgrade, 1991.

D.Muškatirovi , M. Jovanovi : Test tasks from the subject of regulation of rivers, Civil Engineering, Belgrade, 1977.

LJ.Jefti: Arrangement of torrents (Chapter 4 Technicians 6, Belgrade, 1989)